Locally Convex Sparse Learning over Networks

نویسندگان

  • Ahmed Zaki
  • Saikat Chatterjee
  • Partha P. Mitra
  • Lars K. Rasmussen
چکیده

We consider a distributed learning setup where a sparse signal is estimated over a network. Our main interest is to save communication resource for information exchange over the network and reduce processing time. Each node of the network uses a convex optimization based algorithm that provides a locally optimum solution for that node. The nodes exchange their signal estimates over the network in order to refine their local estimates. At a node, the optimization algorithm is based on an l1-norm minimization with appropriate modifications to promote sparsity as well as to include influence of estimates from neighboring nodes. Our expectation is that local estimates in each node improve fast and converge, resulting in a limited demand for communication of estimates between nodes and reducing the processing time. We provide restricted-isometry-property (RIP)-based theoretical analysis on estimation quality. In the scenario of clean observation, it is shown that the local estimates converge to the exact sparse signal under certain technical conditions. Simulation results show that the proposed algorithms show competitive performance compared to a globally optimum distributed LASSO algorithm in the sense of convergence speed and estimation error.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Recovery from Nonlinear Measurements with Applications in Bad Data Detection for Power Networks

In this paper, we consider the problem of sparse recovery from nonlinear measurements, which has applications in state estimation and bad data detection for power networks. An iterative mixed l1 and l2 convex programming is used to estimate the true state by locally linearizing the nonlinear measurements. When the measurements are linear, through using the almost Euclidean property for a linear...

متن کامل

Bornological Completion of Locally Convex Cones

In this paper, firstly, we obtain some new results about bornological convergence in locally convex cones (which was studied in [1]) and then we introduce the concept of bornological completion for locally convex cones. Also, we prove that the completion of a bornological locally convex cone is bornological. We illustrate the main result by an example.

متن کامل

Analysis of Multi-stage Convex Relaxation for Sparse Regularization

We consider learning formulations with non-convex objective functions that often occur in practical applications. There are two approaches to this problem: • Heuristic methods such as gradient descent that only find a local minimum. A drawback of this approach is the lack of theoretical guarantee showing that the local minimum gives a good solution. • Convex relaxation such as L1-regularization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018